

Making freetext search with
Lucene.Net work for you

Anders Lybecker

• Consultant

– Solution Architect

– Miracle Projects A/S

• Expertise

– .Net

– SQL Server

– Freetext Search

aly@miracleas.dk / +45 25 277 147

20 April 2010

Agenda

• Lucene Intro

• Indexing

• Searching

• Analysis
– Options

– Patterns

– Multilingual

– What not to do!

• „Did you mean...“ functionality

• Performance factors for indexing and searching

What is Lucene

• Information retrieval software library

– Also know as a search engine

• Free / open source

• Apache Software Foundation

• Document Database

– Schema free

• Inverted Index

• Large and active community

Who uses Lucene?

• MySpace, LinkedIn, Technorati, Wikipedia,
Monster.com, SourceForge, CNET Reviews, E.
On, Expert-Exchange, The Guardian - Jobs,
Akamai, Eclipse, JIRA, Statsbiblioteket - the
State and University Library in Århus –
Denmark, AOL, Disney, Furl, IBM OmniFind
Yahoo! Edition, Hi5, TheServerSide, Nutch,
Solr

Basic Application

Index
(Directory)

IndexWriter

Document
Name: Anders
Company: Miracle
Skills: .Net, SQL, Lucene

IndexSearcher

Query
Skills: Lucene

Hits
(Matching docs)

Analysis

Querying

1. Construct Query

– E.g via QueryParser

2. Filter

– Limiting the result, E.g security filters

– Does not calculate score (Relevance)

– Caching via CachingWrapperFilter

3. Sort

– Set sort order, default Relevance

Demo

Types of Queries

Name Description

TermQuery Query by a single Term – Word

PrefixQuery Wildcard query – like Dog*

RangeQuery Ranges like AA-ZZ, 22-44 or 01DEC2010-24DEC2010

BooleanQuery Container with Boolean like semantics – Should, Must or Must Not

PhraseQuery Terms within a distance of one another (slop)

WildcardQuery E.g. A?de* matches Anders

FuzzyQuery Phontic search via Levenshtein distance algorithm

Query Parser

• Default Query Parser Syntax
– conference

– conference AND lucene <=> +conference +lucene

– Oracle OR MySQl

– C# NOT php <=> C# -php

– conference AND (Lucene OR .Net)

– “Miracle OpenWorld“

– title:MOW2010

– M?racle

– Mir*

– schmidt~ schmidt, schmit, schmitt

– price:[12 TO 14]

• Custom Query parsers
– Use Irony, ANTLR …

Analysis

• Converting your text into Terms

– Lucene does NOT search your text

– Lucene searches the set of terms created by analysis

• Actions

– Break on whitespace, punctuation, caseChanges, numb3rs

– Stemming (shoes -> shoe)

– Removing/replacing of Stop Words
• The quick brown fox jumps -> The quick brown fox jumps

– Combining words

– Adding new words (synonyms)

Demo

Field Options

• Analyzed, Not Analyzed, Analyzed No Norms, Not
Analyzed No Norms

• Stored – Yes, No, Compress

Index Store TermVector Example usage

Not Analyzed
No Norms*

Yes No Identifiers (Primary keys, file names), SSN, Phone No,
URLs, names, Dates and textual fields for sorting

Analyzed Yes Positions + Offsets Title, Abstract

Analyzed No Positions + Offsets Main content body

No Yes No Document type, Primary keys (if not used for searching)

Not Analyzed No No Hidden keywords

* Norms are used for Relevance ranking

Field Options

• Norms
– Boosts and field length normalization

– Use for ranking

• Default: shorter fields has higher rank

• Term Vectors
– Miniature inverted index

– Term frequency pairs

– Positional information of each Term occurrence (Position and Offset)

– Use with

• PhraseQuery

• Highlighter

• "More Like This“

Copy Fields

• It’s common to want to index data more than
one way

• You might store an unanalyzed version of a
field for searching

– And store an analyzed version for faceting

• You might store a stemmed and non-stemmed
version of a field

– To boost precise matches

Multilingual

• Generally, keep different languages in their own fields or
indexes

• This lets you have an analyzer for each language
– Stemming, stop words, etc.

Wildcard Querying

• Scenario

– Search for *soft

– Leading wildcards require traversing the entire
index

• Reversing Token Filter

– Reverse the order, and leading wildcards become
trailing

– *soft -> tfos*

What can go wrong?

• Lots of things

– You can’t find things

– You find too much

– Poor query or indexing performance

• Problems happen when the terms are not what you
think they are

Case: Slow Searches

• They index 500,000 books

• Multiple languages in one field

– So they can’t do stemming or stop words

• Their worst case query was:

– “The lives and literature of the beat generation”

• It took 2 minutes to run

• The query requires checking every doc containing
“the” & “and”

– And the position info for each occurrence

Bi-grams

• Bi-grams combine adjacent terms

• “The lives and literature “ becomes “The lives” “lives
and” “and literature”

• Only have to check documents that contain the pair
adjacent to each other.

• Only have to look at position information for the pair

• But can triple the size of the index

– Word indexed by itself

– Indexed both with preceding term, and following term

Common Bi-grams

• Form bi-grams only for common terms

• “The” occurs 2 billion times. “The lives” occurs
360k.

• Used the only 32 most common terms

• Average response went from 460 ms to 68ms.

Spell Checking

• „Did you mean...“

• Spell checker starts by analyzing the source
terms into n-grams

Index Structure Example

word kings

gram3 kin, ing, ngs

gram4 king, ings

start3 kin

start4 king

end3 ngs

end4 ings

Demo

Trie Fields – Numeric ranges

• Added in v2.9

• 175 is indexed as hundreds:1 tens:17
ones:175

– TrieRangeQuery:[154 TO 183] is executed as
tens:[16 TO 17] OR ones:[154 TO 159] OR
ones:[180 TO 183]

• Configurable precisionStep per field

• 40x speedup for range queries

Synonyms

• Synonym filter allows you to include alternate words
that the user can use when searching

• For example, theater, theatre

– Useful for movie titles, where words are deliberately mis-
spelled

• Don’t over-use synonyms

– It helps recall, but lowers precision

• Produces tokens at the same token position

– “local theater company”

theatre

Other features

• Find similar documents

– Selects documents similar to a given document,
based on the document's significant terms

• Result Highlighter

• Tika

– Rich document text extraction

• Spatial Search

• …

Demo

General Performance Factors

• Use local file system

• Index Size
– Stop Word removal

– Use of stemming

• Type of Analyzer
– More complicated analysis, slower indexing

– Turn off features you are not using (Norms, Term Vectors etc.)

• Index type (RAMDirectory, other)

• Occurrences of Query Terms

• Optimized Index

• Just add more RAM :-)

Indexing Performance Factors

• Re-use the IndexWriter

• IndexWriter.SetRAMBufferSizeMB
– Minimum # of MBs before merge occurs and a new segment is created

– Usually, Larger == faster, but more RAM

• IndexWriter.SetMergeFactor
– How often segments are merged

– maller == less RAM, better for incremental updates

– Larger == faster, better for batch indexing

• IndexWriter.SetMaxFieldLength
– Limit the number of terms in a Document

• Reuse Document and Field instances

Search Performance Factors
• Use ReadOnly IndexReader

• Share a single instance of IndexSearcher
– Reopen only when nessecary and pre warm-up

• Query Size
– Stop Words removal, Bi-grams …

• Query Type(s)
– WildcardQuery rewrites to BooleanQuery with all Terms

• Use FieldSelector
– Select only the stored fields needed

• Use Filters with cache

• Search an “all” field instead of many fields with the sate
Query Terms

Demo

Questions?

Resources

• Anders Lybecker’s Blog
– http://www.lybecker.com/blog/

• Lucene
– http://lucene.apache.org/java/docs/

• Lucene.Net
– http://lucene.apache.org/lucene.net/

• Lucene Wiki
– http://wiki.apache.org/lucene-java/

• Book: Lucene In Action

• Luke - Lucene Index Exploration Tool
– http://www.getopt.org/luke/

Relevans Scoring

Factor Description

tf(t in d) Term frequency factor for the term (t) in the document (d), ie how many times the term t
occurs in the document.

idf(t) Inverse document frequency of the term: a measure of how “unique” the term is. Very
common terms have a low idf; very rare terms have a high idf.

boost(t.field in d) Field & Document boost, as set during indexing.
You may use this to statically boost certain fields and certain documents over others.

lengthNorm(t.field in d) Normalization value of a field, given the number of terms within the field. This value is
computed during indexing and stored in the index norms. Shorter fields (fewer tokens) get
a bigger boost from this factor.

coord(q, d) Coordination factor, based on the number of query terms the document contains. The
coordination factor gives an AND-like boost to documents that contain more of the search
terms than other documents.

queryNorm(q) Normalization value for a query, given the sum of the squared weights of each of the query
terms.

Index Structure

• Document
– Grouping of content

• Field
– Properties of the Document

• Term
– Unit of indexing – often a word

• Index

• Segment
– File – an index by it self

– Lucene write segments incrementally

Index

Segment

Segment

Segment

…Field 1 Field 2

Document

Phonetic Analysis

• Creates a phonetic representation of the text,
for “sounds like” matching

• PhoneticFilterFactory. Uses one of

– Metaphone

– Double Metaphone

– Soundex

– Refined Soundex

– Nysis

• Components of a Analyzer

– CharFilters

– Tokenizers

– TokenFilters

CharFilters

• Used to clean up/regularize characters before
passing to

• TokenFilter

• Remove accents, etc. MappingCharFilter

• They can also do complex things, we’ll look at

• HTMLStripCharFilter later.

Tokenizers

• Convert text to tokens (terms)

• Only one per analyzer

• Many Options

– WhitespaceTokenizer

– StandardTokenizer

– PatternTokenizer

– More…

TokenFilters

• Process the tokens produced by the Tokenizer

• Can be many of them per field

